Available online at www.sciencedirect.com

".* ScienceDirect PATTERN

RECOGNITION

THE JOURNAL OF THE PATTERN RECOGNITION SOCIETY

Pattern Recognition 111 (RRIN) RRD-1N1

www.elsevier.com/locate/pr

Robust and efficient multiclass SVM models for phrase pattern recognition

Yu-Chieh Wu?, Yue-Shi Lee®, Jie-Chi Yang®:*

aDepartment of Computer Science, National Central University, 300 Jhongda Rd., Jhongli City, Taoyuan 32001, Taiwan
bDepartment of Computer Science, Ming Chuan University, 5 De-Ming Rd., Gwei Shan District, Taoyuan 333, Taiwan
CGraduate Institute of Network Learning Technology, National Central University, 300 Jhongda Rd., Jhongli City, Taoyuan 32001, Taiwan

Received 29 December 2006; received in revised form 22 November 2007; accepted 24 February 2008

Abstract

Phrase pattern recognition (phrase chunking) refers to automatic approaches for identifying predefined phrase structures in a stream of
text. Support vector machines (SVMs)-based methods had shown excellent performance in many sequential text pattern recognition tasks
such as protein name finding, and noun phrase (NP)-chunking. Even though they yield very accurate results, they are not efficient for online
applications, which need to handle hundreds of thousand words in a limited time. In this paper, we firstly re-examine five typical multiclass
SVM methods and the adaptation to phrase chunking. However, most of them were inefficient when the number of phrase types scales. We thus
introduce the proposed two new multiclass SVM models that make the system substantially faster in terms of training and testing while keeps
the SVM accurate. The two methods can also be applied to similar tasks such as named entity recognition and Chinese word segmentation.
Experiments on CoNLL-2000 chunking and Chinese base-chunking tasks showed that our method can achieve very competitive accuracy and
at least 100 times faster than the state-of-the-art SVM-based phrase chunking method. Besides, the computational time complexity and the

time cost analysis of our methods were also given in this paper.
© 2008 Elsevier Ltd. All rights reserved.

Keywords: Machine learning; Multiclass classification; Natural language processing; Support vector machines

1. Introduction

Phrase pattern recognition (phrase chunking) is a task in
which phrase structures in text are detected and classified into
predefined types such as noun phrase (NP), verb phrase (VP),
prepositional phrase (PP), etc. These phrases are non-recursive,
non-overlap, i.e., they cannot be included in other chunks
[1]. Phrase structures provide important and useful syntactic
information for downstream applications. Examples include
text mining [2], text categorization [3], named entity recog-
nition [4], chunk-based machine translation [5], semantic role
labeling (SRL) [6,7], and bottom-up chunk-based grammar
parsing [8,9].

Over the past few years, a great amount of research stud-
ies stressed on developing high performance chunking mod-
els adopting various supervised machine learning algorithms

* Corresponding author. Tel.: +88634227151x35414;
fax: +88634275336.
E-mail address: yang@cl.ncu.edu.tw (J.-C. Yang).

0031-3203/$30.00 © 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2008.02.010

such as SVM [10-14], voted-perceptrons [15], Winnow [16],
and hidden Markov models (HMMs) [17]. Among them, the
SVM-based method showed a great performance in terms of
accuracy. However its inefficiency in actual use limits practi-
cal purpose, like information retrieval and extraction (IE and
IR), and question answering (QA) which should take tens of
thousand related articles into consideration in very short time.
The major limitation of SVM is that it is essentially a binary
classifier, which needs to decompose multiclass to several bi-
nary categories. However, adopting existing multiclass SVM
models could not provide an efficient phrase chunking time
performance. For example, Wu et al. [11-13] employed one-
versus-all (OVA) decomposition method for SVM, and ran at
a rate of 1200 words per second. Kudoh and Matsumoto [10]
combined eight SVM classifiers with one-versus-one (OVO)
SVMs, which could only handle 20-30 words in one second.
Although these methods showed an excellent success in terms
of accuracy, to handle large-scale classification tasks for on-
line purpose, designing an efficient and robust multiclass SVM
model is indispensable.

10.1016/j.patcog.2008.02.010

Please cite this article as: Y.-C. Wu, et al., Robust and efficient multiclass SVM models for phrase pattern recognition, Pattern Recognition (2008), doi:

http://www.elsevier.com/locate/pr
mailto:yang@cl.ncu.edu.tw
http://dx.doi.org/10.1016/j.patcog.2008.02.010

2 Y. Wu et al. / Pattern Recognition 111 (1111) INI—011

On the other hand, some of the light-weight and efficient
chunking models [17,18] can swift process tens of thousand
words on single process. But these methods are not accurate.
Even feeding the hand-annotated training data in several times
larger, the performance is still worse than SVM-based methods.
For example, the HMM-based chunking models [17] could rec-
ognize about 40 000 terms per second, while achieved 92.19 in
Fp, rate (defined in Section 4.1) for the CONLL-2000 chunking
task. When the training size scales to four times larger (about 1
million words), the performance was still worse than the SVM-
based methods (93.25 versus 94.12 reported by Ref. [12]).

In this paper, we propose two new strategies to speed-up
the SVM for phrase chunking problems. One is C-OVA (con-
straint one-versus-all), which is an extension of conventional
one-versus-all decomposition scheme. The other is HC-OVA
(hierarchical constraint one-versus-all) where the classification
process can be viewed as visiting a constraint binary tree.
We also re-examine and compare with five typical types of
multiclass SVM models in terms of theoretical computational
time complexity analysis and experimental results for chunk-
ing tasks. To the best of our knowledge, there is no work that
had presented not only the efficient SVM-based phrase chunk-
ing methods yet the sizable and more complete comparative
studies for the five typical multiclass SVM models. The experi-
mental results on the CoNLL-2000 and Chinese base-chunking
tasks show that our methods perform at least 100 times faster
than the state-of-the-art SVM-based chunking models without
a discernible change in accuracy. Besides, the two methods can
also be applied to other similar tasks, such as named entity
recognition [4,19], and Chinese word segmentation [20].

2. SVM-based phrase chunking models

Support vector machines (SVM) [21] was originally designed
for binary classification problems. How to effectively cast the
multiclass problems is still an on-going issue. Currently there
are five typical types of multiclass SVM, namely OVA, OVO,
directed acyclic graphs (DAG), error-correcting output codes
(ECOC), and tree-based. In this section, we briefly introduce
SVM at the beginning and review these typical multiclass SVM
models. At the end of this section, we describe the use of SVM
for phrase chunking.

2.1. Support vector machines

Suppose we have the training instance set for binary classi-
fication problem:

(x1,y1), (x2,y2), ..., (xN,yN) xi € RP, yie {+1, -1}

where x; is a feature vector in D-dimension space of the ith
example, and y; is the label of x; either positive or negative. To
determine the class (+1 or —1) of an example x can be judged
by computing the following equation:

Y wyiK(e,x) | +b e

x;€SVs

y(x) =sign

o; is the weight of training example x; (o; > 0), and b denotes
as a threshold. Here the x; should be the support vectors (SVs),
and represent the separation between different classes, as they
only lie along the separating hyperplane. The kernel function
K is the kernel mapping function, which might map from R”
to RY' (usually D < D’). The natural linear kernel simply uses
the dot-product as

K (x, x;) = dot(x, x;) 2)
A polynomial kernel of degree d is given by
K (x, xi) = (1 + dot(x, ;)" 3)

One can design or employ off-the-shelf kernel types for par-
ticular applications. For example, the polynomial kernel-based
SVM was shown to be the most successful kernels for many
natural language processing (NLP) problems, such as part-of-
speech (POS) tagging [22], phrase chunking [10,12], and propo-
sitional parsing [6,7].

It is known that the dot-product (linear form) represents the
most efficient kernel computing which can produce the output
value by linearly combining all SVs such as

y(x) =sign(dot(x, w) +b), where w= Y wyx; (4)
x;€SVs

By combining Egs. (1) and (3), the determination of an ex-
ample of x using the polynomial kernel can be shown as fol-
lows:

y(x) = sign ((> aiyi(dot(x, xi) + 1)") - b) (5)

xieSVs

Usually, degree d is set more than 1 because when d is set as
1, the polynomial kernel backs-off to linear kernel. Although
the effectiveness of polynomial kernel, it cannot be shown to
linearly combine all SVs into one weight vector whereas it re-
quires computing the kernel function (3) for each SV x;. The
situation is even worse when extending the binary classifier
to multiclass problems. Besides, the training cost of polyno-
mial kernel is far higher than linear kernel. Previous literatures
[10,12,22] showed the effectiveness but high-computation cost
when using the polynomial kernel. In Wu’s [12] study, the
use of polynomial kernel (d =2) SVM showed a slightly im-
provement than linear kernel (94.12 versus 94.20 in Fg) rate
for CoONLL-2000 chunking task), while the training time and
testing speed scaled, respectively, from 3 hours to 4 days and
1200 terms/s to 5—10 terms/s.

2.2. Multiclass SVMs

As described above, to extend SVM to multiclass, it needs to
decompose the multiclass to several binary categories. In this
paper, we focus on comparing with the following five multi-
class SVM types, namely, OVA [23], OVO [24], DAG [25],
ECOC [26,27], and tree-based [28] which were successfully
employed to sequential pattern recognition and NLP tasks. The
OVA simply creates C binary SVMs for all categories, where

10.1016/j.patcog.2008.02.010

Please cite this article as: Y.-C. Wu, et al., Robust and efficient multiclass SVM models for phrase pattern recognition, Pattern Recognition (2008), doi:

http://dx.doi.org/10.1016/j.patcog.2008.02.010

Y. Wu et al. / Pattern Recognition 111 (1111) 1NI-111 3

C is the number of class. For i-th SVM only the examples in
the i-th class are viewed as positive instances while the remain-
ing ones belong to negative. Both Refs. [12] and [22] showed
very competitive results for POS tagging and phrase chunking
by means of OVA-based multiclass SVM. Another multiclass
SVM model is called OVO. It creates pairwise SVM for ar-
bitrary class pairs. In other words, OVO constructs C(C-1)/2
SVMs to solve the multiclass problem. The class of a new item
is mainly determined through majority voting by pairwise clas-
sifiers. The Kudoh’s chunking system [10] was designed based
on this model.

The third type is: DAG [25], which integrated the training
schema of OVO and graph visiting strategy for testing. Its train-
ing phase is the same as OVO model. However, in testing phase
it visits the DAG by incrementally removing an irrelevant cat-
egory. This graph is a rooted binary acyclic graph which has
C(C — 1)/2 internal nodes and C leaves. Each internal node
represents a binary SVM for two classes. To determine the class
of the given example, DAG starts from the root, and moves left
or right depending on the binary output of the SVM. When it
moves left, the right class will no longer be compared in the
following stage until the leaf node reaches.

Anther multiclass model is ECOC, which disambiguates the
output Boolean codes from all binary classifiers. The main spirit
of ECOC is to construct the code word matrix where row i
represents the code vector of class i, and column j defines
a split for binary classifier to learn. To determine the class,
ECOC compares the generated bit vector with each row of the
matrix. Usually, the row with minimum hamming distance is
selected [26]. In basic, it requires at least log, C and at most
2¢=1 _ 1 bits to disambiguate C-classes. Usually, the longer
the bit vector, the more correcting power (higher performance)
it achieves [26,27]. But the scaled code word largely increases
the training and testing time costs. On the contrary, the shorter
the bit vector, the faster the classification time.

Unlike previous four methods, the tree-based multiclass
SVM treats the multiclass classification process as the tree
visiting. The leaf node of the tree represents the class, and the
internal node can be viewed as a binary decision. It is clear to
see that this method depends on the tree construction. Taka-
hashi and Abe [28] presented both top-down and bottom-up
clustering techniques with two different similarity measure-
ments to build the tree. An extension of their work can be
shown in Ref. [29] which made use of more elaborate similar-
ity measurements and applied to all training examples. Vural
and Dy [30] proposed divide-by-2 (DB2) algorithm that parti-
tioned training set into almost equal two subsets. It is known
that the “set partition” is an NP-hard problem [31], which ex-
ponentially scales. In addition, DB2 cannot partition the case
like Chinese base-chunking in which the NP dominates 57%
of the training set.

Additionally, we do not compare with some other multiclass
SVM models, like multiclass SVM [32], and HMM-SVM [33]
which linked the dependence among individual binary classi-
fiers based on the OVA scheme. The multiclass SVM [32] has
the same testing time complexity as the OVA model, while it
scales the original dimensions with C times larger where C

Table 1
An Example for IOB1/2 and IOE1/2 chunk representation styles

Word I0B1 10B2 IOEl I0E2
In I-PP B-PP I-PP E-PP
early I-NP B-NP I-NP I-NP

trading I-NP I-NP I-NP E-NP
in I-PP B-PP I-PP E-PP
Hong I-NP B-NP I-NP I-NP

Kong I-NP I-NP E-NP E-NP
Monday B-NP B-NP I-NP E-NP

is the number of categories. Similarly, the HMM-SVM [33]
has the similar training style as multiclass SVM, while it fur-
ther takes the state(class)-transition estimations into account
and also employed the Viterbi algorithm for training and test-
ing. It is known that the Viterbi algorithm is a famous dynamic
programming technique which is at least C times larger than
conventional OVA in terms of testing time complexity. We do
not compare the two methods here, since they were essentially
the variant types of OVA, and required far training and testing
time than the OVA, while achieved similar results. For exam-
ple, the training time of the HMM-SVM! for the CONLL-2000
chunking task (23 categories) was eight days. It willspend sev-
eral weeks to train the Chinese base-chunking dataset, since 47
chunk classes should be learned.

2.3. Phrase chunking tasks

Ramshaw and Marcus [34] proposed the earliest in-
side/outside label style to represent NP chunks. This method
involves in three tags, B, I, and O. I tag indicates the cur-
rent word which is inside a chunk, B tag is used to represent
the beginning of a chunk which immediately follows another
chunk, O tag means the current word does not belong to a part
of chunk. This method is also called IOB1. Tjong Kim Sang
and Veenstra [35] derived the other three alternative versions,
I0B2, IOE1, and IOE2.

IOB2: is different from IOB1, which uses the B tag to
mark every beginning word of a chunk and the other inside
terms are labeled as I tag.

IOE1l: An E tag is denoted as the ending word of a chunk
which is immediately before a chunk.

IOE2: The E tag is given for every word that is the end of
a chunk.

Let us illustrate the four representation styles with an ex-
ample, considering a clause, “In early trading in Hong Kong
Monday”, the four representation styles of the clause are listed
in Table 1. This example also encodes the phrase chunk type
with labeling the specific type behind the B/I/E tags. For ex-
ample, the B-PP is used to represent the beginning of a PP in
the IOB2 style.

I We use the SVM-struct toolkits which can be found at: http://
svmlight.joachims.org/svm_struct.html.

Please cite this article as: Y.-C. Wu, et al., Robust and efficient multiclass SVM models for phrase pattern recognition, Pattern Recognition (2008), doi:

10.1016/j.patcog.2008.02.010

http://svmlight.joachims.org/svm_struct.html
http://svmlight.joachims.org/svm_struct.html
http://dx.doi.org/10.1016/j.patcog.2008.02.010

4 Y. Wu et al. / Pattern Recognition 111 (1111) INI—011

By encoding with the IOB tags, we can reformulate the
chunking problem as sequence of word classification [34]. The
sequential word classification had been applied to many sim-
ilar tasks such as full parsing [8,9], IE [2], SRL [6,7], etc. In
general, the contextual information is often used as the basic
feature type; the other features can then be derived based on
the surrounding words, such as words and their POS tags. The
chunk class of the current word is mainly determined by the
context information. By following [10-13], we use the follow-
ing context feature types to represent a training example. Ex-
amples of the representations for the features can be found in
Refs. [10-13].

e Lexical information (unigram/bigram).

e POS tag: unigram_POS, bigram_POS, and trigram_POS in-
formation were encoded.

e Affix (2 ~ 4 suffix and prefix letters).

e Previous chunk information: unigram_chunk, and bi-
gram_chunk were considered.

e Orthographic feature type [12,13].

e Possible chunk classes: the possible chunk class of current
word.

e Word+POS bigram (current token+next token’s POS tag):
it represents the combination of the current word and its
next word’s POS tag as a bigram feature.

In addition, the chunking directions can be reversed from left
to right into right to left. The original left to right chunking pro-
cess classifies word with the original directions, i.e., the class
of the current word is determined after chunking all preceding
terms of it. In the reverse version, the chunking process begins
from the last word of the sentence to the first term. We name
the original chunking process as forward chunking, while the
reverse process as backward chunking.

3. Efficient multiclass SVM models

In terms of testing time complexity, most multiclass models
explicitly perform classification for each category other than
tree-based methods. That is to say when the number of class
scales to high, the testing speed will be reasonably reduced, in
particular to OVO. To remedy this, we propose two new strate-
gies that make the SVM-based chunking substantially faster.
The first two sections, we present the proposed two methods.
The comparison and computational time complexity analysis
of our methods are discussed in Section 3.3.

3.1. Hierarchical constraint-one-versus-all

When employing the IOB-like encoding styles, the scaled
number of phrases directly increases twice number of chunk
class. In the CoNLL-2000 chunking task, the 11 phrase types
produce 11%2+1=23 chunk classes, and 47 chunk classes are
derived from 23 phrase types for the Chinese base-chunking.
The situation is even more aggravated when using more specific
labeling styles, like BIESO that explicitly indicates the begin,
interior, end, single, and outside of a chunk type since the

Table 2

Consistent matrix

Class Pair B-NP B-VP I-NP I-VP (0]
B-NP 1 1 1 0 1
B-VP 1 1 0 1 1
I-NP 1 1 1 0 1
I-VP 1 1 0 1 1
(0] 1 1 0 0 1

Previous Current
chunk class chunk class

1
Begin-group yale Begin-group
(B-NP, B-VP,...etc) . (B-NP, B-VP....etc)
alid?
id1
Interior-group Valid Interior-group
(I-NP, I-VP,...etc) (I-NP, I-VP,...etc)

Valid?

Valid' : valid for every group members
Valid? ; valid only when previous and current chunk classes are the
same phrase type

Valid? : valid only for previous and current chunk classes are the
same

Fig. 1. The validity relationship between Begin- and Interior-groups.

scaled chunk types is four times larger. However about half of
the chunk classes are unnecessarily classified. For example, if
the previous word was classified as B-NP, then its next term is
impossible to be I-VP, I-PP, etc.

To solve this, a consistent matrix is therefore used, which
marks the validity of previous and current chunk classes. For
example, Table 2 lists an example of the consistent matrix of
NP and VP types using IOB2. The first column indicates the
chunk class of previous word while the first row gives legal
chunk classes of current term. Intuitively, if previous word was
classified as B-NP, then the current chunk class should belong
to one of the four chunk classes, B-NP/B-VP/I-NP/O, whereas
I-VP is invalid. Furthermore, we can generalize this relation
to the other three IOB styles, IOB1, IOEIl, and IOE2. Here,
we define that all chunk classes should belong to one of the
following two groups:

Begin-group: start of a chunk, for example, the B-tag for
IOB2, I-tag for IOE2.

Interior-group: inside of a chunk, for example, I-tag for
I0B2, and E-tag for IOEI.

Fig. 1 illustrates the relationships between the two groups.
Based on the relationship, we can manually build the consistent
matrix by connecting the validity between the two groups. That
is, whether previous chunk class is Begin-group or interior-
group, the chunk class of current word potentially belongs to

10.1016/j.patcog.2008.02.010

Please cite this article as: Y.-C. Wu, et al., Robust and efficient multiclass SVM models for phrase pattern recognition, Pattern Recognition (2008), doi:

http://dx.doi.org/10.1016/j.patcog.2008.02.010

Y. Wu et al. / Pattern Recognition 111 (1111) 1NI-111 5

Algorithm 1: Auto-construct consistent matrix

Phrase type = {NP, VP, PP,...}

data

3:) For each IOB-tag {

}/End for
}/End for

Notation: IOB-tag = {I, B, E} (Obviously, O tag should be the Begin-group)
Chunk class is the combinations of each chunk type and IOB-tag
1:) Initialize the consistent matrix (CM) by verifying the valid chunk class pairs of previous and current tokens in the training
2:) Get IOB-tag and set them as Interior-group initially. (for example, B-NP => B, I-NP =>1I)
4:) For each chunk class pair (Ch; and Chy) with the same IOB-tag where j . k {

5:) Check whether there exists a valid item between Chj and Ch; in CM
6:) If the validity exists, then this IOB-tag is assigned to Begin-group

7:) Re-organizes CM with the relations between Begin-group and Interior-group.

Fig. 2. A consistent matrix construction algorithm.

any member of the Begin-group or “a specific” chunk class
of the interior-group in which the phrase type is equivalent
to previous one. In other words, from Begin/Interior-groups
to Begin-group is valid, while from Begin/Interior-groups to
Interior-group is valid only when they share the same chunk.

Obviously, for IOB2 representation style, it is not difficult to
annotate the consistent matrix by hand. However, for the other
three representation styles together with forward and backward
chunking directions, it requires lots of human efforts especially
to a large amount of phrase types, like Chinese (47 chunk
classes). For different chunking tasks, manual-development of
consistent matrix is needed. To generalize the matrix for dif-
ferent purpose, an automatic approach is required.

Hence we propose an algorithm to generate the consistent
matrix automatically without considering the used representa-
tion method is IOB or IOE labeling styles. Fig. 2 shows the
proposed algorithm.

As outlined in Algorithm 1, the first two steps aim to ini-
tialize the consistent matrix by scanning the previous-current
chunk class pairs and extracting the IOB tag from training data.
At third step, we check the consistency of arbitrary chunk class
pairs of the same IOB-tag in the initial consistent matrix. If
the two chunk classes are valid, then the IOB tag belongs to
Begin-group. For Interior-group, the validity only exists when
previous and current chunk share the same phrase type. Once
the Begin and Interior-groups are determined, then the final
consistent matrix could be generated by connecting the rela-
tionships between the two groups. The final line of the algo-
rithm finally fills the matrix according the classified group. It
is worth to note that we ignore the O-tag here since it should
be the Begin-group clearly.

Let us illustrate with a simple example, Table 3 lists the initial
consistent matrix that is gathered from the training data. In this
example, the IOB tags are B and I which are set to Interior-
group initially. For B tag, we find that the validity also occurs in
the chunk class pair, (B-NP, B-VP) in which they share the same
IOB tag (i.e., B tag) in the initial consistent matrix. Thus, B tag
is assigned to Begin-group. For I tag, after scanning all pairs,
we conclude that the validity only exists when previous and
current chunk classes belong to the same phrase type such as (I-
NP, I-NP), (B-NP, I-NP), (B-VP, I-VP). Therefore I tag is still

Table 3

Initial observed consistent matrix

Class Pair B-NP B-VP I-NP I-VP (0]
B-NP 1 1 1 0 1
B-VP 0 0 0 1 0
I-NP 1 0 1 0 1
1I-VP 0 0 0 0 0
(0} 1 0 0 0 1

T

Tree height = number True
of chunk class

| True I-vP

Fig. 3. Skewed tree structures for multiclass chunking strategy.

True

in the Interior-group. After classifying Begin/Interior-groups
for each 1OB tag, the final consistent matrix is re-organized by
bridging the valid relationship between the two groups. That
is, we set the column of each Begin-group as valid, and the
validity of the Interior-group is valid only when its previous
chunk is the same as current chunk. After this step, we can
generate the final consistent matrix as Table 2.

Although the consistent matrix method can reduce half clas-
sification times for SVM, if the number of phrase type is still
large, classifying is remaining time-consuming. Empirically, in
the chunking task we found that about half ratio of the words
belong to NP (in English and Chinese). In particular to the three
phrase types, NP, VP, and PP that cover 90% of the training
data. In Chinese base-chunking, the proportion of NP in the
training set is 57% and the three phrase types NP, ADVP and VP
denominate 83%. In most cases, the chunk class of each word

10.1016/j.patcog.2008.02.010

Please cite this article as: Y.-C. Wu, et al., Robust and efficient multiclass SVM models for phrase pattern recognition, Pattern Recognition (2008), doi:

http://dx.doi.org/10.1016/j.patcog.2008.02.010

6 Y. Wu et al. / Pattern Recognition 111 (1111) INI—011

set. The Or list stores all chunk classes.
3:) Fori:=1toC-1

Algorithm 2: HC-OVA training (Chunk_class C, set_of_labeled_training examples)
Notation: C is the number of chunk classes

1:) Construct the consistent matrix using Algorithm 1.
Build the ordering list: Or[i] based on counting the frequency of each chunk class in the training

4:) Collecting the positive examples from chunk class Orf[i]

5:) Forj:=i+lto C

6:) Collecting negative examples from chunk class Or[;]
7)) Training SVM for chunk class Or[i]

Fig. 4. Hierarchical constraint one-versus-all algorithm for multiclass SVM training.

1:) Foreacht, {
2:) Forj:=1to C{

Algorithm 3: HC-OVA testing (list Or, term 1)
Notation: #;: term ;; Ch;: is the chunk class of ;.

3:) /* check the validity between previous and current chunk classes

If (consistent (Ch;_;, Or[}])) {

4:) Ch; = Orlj]
5:) Classify t; with SVM Or[j]
6:) If ¢, is classified as positive, then
7:) Stop classifying
M/End if
}/End for
}/End for

Fig. 5. Hierarchical constraint one-versus-all algorithm for multiclass SVM testing.

should be one of those high-frequent classes. Therefore, we
design a new multiclass strategy for SVM to restrict the classi-
fication of high-frequent chunk classes at higher priority. The
main spirit of this method is to reduce unnecessary classifi-
cations through classifying the high-frequent chunk class first.
This schema can be illustrated with a skewed binary tree as in
Fig. 3.

Every internal node in Fig. 3 represents a decision of one
class and the remaining non-visited classes. Each leaf node de-
notes as a chunk class, and the higher frequent the chunk class
observed, the higher level it is in the tree. Determining the
chunk class of a term is equivalent to visit the skewed binary
tree. Once the leaf node is visited at higher level, the remain-
ing nodes will no longer be classified. Thus, most rare chunk
classes are not compared in testing phase. Combining with the
consistent matrix, some of the internal nodes can be further ig-
nored without performing SVM classifying by checking the va-
lidity. The overall training and testing algorithms are outlined
in Figs. 4 and 5.

As outlined in Algorithm 2, we construct an ordering list via
estimating the frequency in the training data. For example, as
shown in Fig. 2, Or[0] is I-NP. These chunk classes are trained
by following this order (the third step). Note that we discard
a subset of training example that belongs to previous chunk
class repeatedly (see steps 5 and 6 in Algorithm 2). On the
other hand, the testing algorithm (Algorithm 3) is performed
by following the ordering list and the built consistent matrix
(by Algorithm 1). Hence, the consistent matrix can be used to

limit the classification only when previous-current chunk class
pair is valid in the matrix.

3.2. Constraint-one-versus-all

The main idea of constraint OVA method is to reduce half
of the comparison times using the consistent matrix only. Dur-
ing testing, we only put emphasis on picking up the whole
Begin-group and one from Interior-group. For the beginning of
a sentence, the Begin-group is only taken into consideration.
As described in Section 3.1, the Interior-group should follow
the Begin-group with the same phrase type. For the previous
example, three chunk classes belongs to Begin-group, B-NP, B-
VP, and O, while the I-NP and I-VP were assigned to Interior-
group using Algorithm 1. In testing, for the first word, we only
focus on classifying with all of the chunk classes in the Begin-
group, i.e. B-NP, B-VP, O. If the first word is classified as B-
NP then the second term should not be the other chunk classes
in Interior-group other than I-NP. Therefore the B-NP, B-VP,
O and I-NP should be used for classifying.

Based on this constraint, the training examples of the Interior-
group could be further reduced. It is impossible to compare two
chunk classes of the Interior-group simultaneously. On the con-
trary, the Begin-group is invited to be classified with a specified
chunk class of Interior-group. In basic, we cannot reduce any
training example for Begin-group. Overall, training the chunk
class of the Begin-group is equivalent to the conventional OVA
method, while training the Interior-group, only one chunk class
is used against the whole Begin-group.

10.1016/j.patcog.2008.02.010

Please cite this article as: Y.-C. Wu, et al., Robust and efficient multiclass SVM models for phrase pattern recognition, Pattern Recognition (2008), doi:

http://dx.doi.org/10.1016/j.patcog.2008.02.010

Y. Wu et al. / Pattern Recognition 111 (1111) 1NI-111 7

Table 4
Training/testing time complexity of different multiclass models

Multiclass SVM model

Balanced data distribution

Unbalanced data distribution

Training Testing Training Testing
One-versus-all (OVA) CN C CN C
One-versus-one (OVO) (C—-1N Cc(C—-1)/2 (C—-1)N Cc(C—-1)/2
Directed acyclic graphs (DAG) (C—-1N C—-1 (C—-1N C—-1
Dense error correcting output codes (Dense-ECOC) (logC)N log C + Clog C* (logC)N logC + ClogC*
Balanced tree-based (logC)N log C (logC — 1)N logC
Unbalanced tree-based (C+1)N/2 I~C—-1 N~ (C—-1N I~C—-1
Constraint-OVA (C-OVA) B+ (C—-B)(B+1)N/2 B+1 BN~ (B+ 1)N B—1
Hierarchical constraint-OVA (HC-OVA) (C+1)N/2 1~B+1 N 1~B+1

2The dense-ECOC requires not only the log C SVM classification times, but also C log C times for decoding.

3.3. Computational time complexity analysis

Recent studies [36-38] had presented that the linear kernel
SVM could be trained in linear time, i.e., O(N) where N is
the number of training examples. Based on this hypothesis, we
can derive the training time complexity for multiclass SVM
models. For OVA, the training time complexity is O(CN) which
involves in performing C times leaning on the complete training
set. Testing time of OVA is intuitively O(C).

Different from OVA, the OVO constructs (g) SVMs for arbi-
trary two class pairs. When training data is balanced distributed,
i.e. there are N/C examples in each category, the training time
complexity is

C\(2N_CC-D2N
(5)(6)- =57~

When data is unbalanced distributed, all training examples
centralize to a specific class, the training time complexity is
O(C—1)N).Itis clear that the DAG-based multiclass SVM had
the same training time complexity as OVO method, while test-
ing time complexity was less than OVA one time, i.e., O(C —1).
The main idea of DAG is based on the OVO learning and its
testing phase is equivalent to visit the acyclic graph.

The derivation of the tree-based method is somewhat com-
plicated. We discuss it in four cases, balanced/unbalanced trees
joint with unbalanced and balanced data distributions. Since
our focus is not the proofs here, we leave the detail derivations
in Appendix A. By means of the inference in Appendix A,
we show that the tree-based method is a very efficient model
in terms of training and testing. Table 4 lists the detail time
complexity of the above methods. Note that the balanced tree
denotes as the tree is height balanced.

We do not circumstantially derive the time complexity of the
adopted ECOC approach that depends on the code word length.
In this paper, we only employ the “dense” encoding method
to generate code matrix, i.e., encode C categories with log C
Boolean bits. Using the dense encoding for ECOC, the train-
ing time complexity is equivalent to the balanced tree-based
models, while it requires log C times SVM classification plus
Clog C times for decoding the code vectors. In contrast, the
dense-ECOC needs additional decoding costs than the balanced

tree-based methods. One can also adopt various encoding meth-
ods for ECOC, like OVO and BCH codes, however, when the
code length largely scales, the training and testing times greatly
increased for the chunking task. In our experiments (Tables 6
and 7), the testing time of OVO that is quadratic scaled is 10-50
times larger than the other types where it requires 60 s to clas-
sify 47 000 words.

On the other hand, we analyze the time complexity of the
proposed two methods, C-OVA, and HC-OVA. In terms of HC-
OVA, the training time complexity is only O(N) when data
biases to one class. In the balanced case, each category contains
roughly N/C examples so that we have,

(£ (20022

As described in Section 3.1, at each time, we use single SVM
learns to classify one class. At the next step, the training data
is reduced by removing the positive examples of previous step.
In the balanced case, we can almost remove N/C examples
at each step from the whole set. The above equation can be
re-written and simplified as follows:

EN) - (2N) 4 (S N) + (S

C C C C

1424 1
< +2+---+C N— (C+1 N

C 2

For testing time complexity, in the best case HC-OVA only
compares once in testing, i.e., O(1), while in the worst case, it
should compare all of the chunk classes that belong to Begin-
group and a class from Interior-group, i.e., O(B + 1) where B

is the number of chunk classes in the Begin-group. In contrast,
the training time complexity of C-OVA in the balanced case is

Begin-group: O(BN)
Interior-group: O((C — B)(B + 1)N/C)
Overall: O(B + (C — B)(B+1)N/C)

In the unbalanced case, when dataset biased to the Begin-
group, the training time complexity is O(BN). On the contrary, if
the dataset biased to a chunk class of Interior-group, the overall
training time is O((B + 1)N). For the testing time, C-OVA
compares the whole Begin-group and one chunk class from

10.1016/j.patcog.2008.02.010

Please cite this article as: Y.-C. Wu, et al., Robust and efficient multiclass SVM models for phrase pattern recognition, Pattern Recognition (2008), doi:

http://dx.doi.org/10.1016/j.patcog.2008.02.010

8 Y. Wu et al. / Pattern Recognition 111 (1111) 10001

Table 5
Top five multiclass SVM models for training and testing

Rank Name Distribution type Training time complexity Rank Name Testing time complexity
1 HC-OVA Unbalanced N 1 Balanced-tree log C

2 Unbalanced-tree Unbalanced N~ (C—-1)N 2 HC-OVA 1~B+1

3 Balanced-tree Balanced (log C)N 3 Unbalanced-tree 1~C—-1

4 Dense-ECOC - (logC)N 4 C-OVA B+1

5 HC-OVA Balanced (C—=1)N/2 5 DAG Cc—-1

Interior-group, thus, the time complexity is precisely O(B + 1)
which is the same as the worst case of HC-OVA.

A full comparison of multiclass SVM models and our meth-
ods is listed in Table 4. We also summarize the most efficient
top five approaches for training and testing in Table 5. As
summarized in Table 5, when data is unbalanced distributed,
the best “training time” can be compassed with HC-OVA, and
unbalanced tree-based method. If the data is balanced dis-
tributed, then the tree-based and dense-ECOC are the best
choices. In terms of “testing time”, the most efficient models
are: tree-based, dense-ECOC, and HC-OVA. It is important
to note that we could not exactly analyze the actual testing
time complexity for HC-OVA and unbalanced tree-based ap-
proaches, since they depend on the testing data and the actual
SVM performance. In the next sections, we will present exper-
imental results and the analysis of the actual testing time costs
on the real data.

In NLP community, most data are unbalanced distributed
where relatively small parts of categories cover most propor-
tion. This situation is also true in many similar tasks, like named
entity recognition and SRL. In statistics, NP, VP, and PP dom-
inate 90% of the training data in the CoNLL-2000 chunking
task. Alternatively 83% of the training data of the Chinese
base-chunking task belong to NP, VP, and ADVP. In such an
unbalanced case, our methods (HC-OVA) are very suitable for
phrase chunking tasks.

4. Experiments

In this section, we exploit the performance of our methods
on the real data. Sections 4.1 and 4.2 describe the experimental
settings and the used data. Section 4.3 presents the experimental
results of our methods and the other multiclass SVM models.
Finally we compare our method to the published studies in
Section 4.4.

4.1. Dataset and evaluation metrics

To fairly compare with related studies, we use the chunking
dataset from CoNLL-2000 shared task [39], which is the stan-
dard benchmark and widely evaluated in many research studies,
e.g., [10-12,15-17,19,39]. The benchmark was derived from
the English Peen-Treebank Wall Street Journals (WSJ) where
sections 15—-18 were used for training and section 20 for test-
ing. The dataset contain tokens (words and punctuation marks,
etc), information about the location of sentence boundaries,
auto-labeled POS tag information, and information of chunk

boundaries (i.e., IOB2 representation style). The POS tag of
this data had been labeled by a standard POS tagger [40] in
order to reflect the realistic performance rates for which no
human-made POS tags are available. In this dataset the chunk
tag had been represented with the IOB2 methods. Users can
employ the training data to train a chunking system. In test-
ing the system should be able to predict the chunk tag of each
word in the testing data and the performance was evaluated by
how accurate the system is. It is a public benchmark corpus
and available.> The organizers [39] also provide a perl-script?
which enables users to convert the original Treebank structures
into chunk structures.

In CoNLL-2000 chunking task, there are 11x2-+1=23 chunk
classes (11 phrase types with B/I or I/E tags plus an outside
tag O). We also use the Chinese Peen-Treebank to evaluate the
efficiency of the scaled chunk classes. The front 0.28 million
words were used for training, while the remaining 0.08 million
words for testing. In Chinese, the 23 phrase types produce to
23 % 1+ 1 =47 chunk classes. However, there is not a standard
POS-tagger for Chinese, instead, we simply use the gold hand-
annotated tags.

The performance of the chunking task is usually measured
with three rates, namely recall, precision, and F, (f=1) [39]. First,
the recall rate is to estimate the ratio of phrases found by
the system. Second, the precision rate measures the percentage
of the predicted phrases that are correct. Finally, the F(g_p)
rate combines both recall and precision rates into one single
measurement by the following:

2 x recall * precision

F — =
(=D precision + recall

For a fair comparison, we use the perl-script evaluator released

by CoNLL* to evaluate the three measures for the following

experimental results.

4.2. Settings

Before experiments, we try to optimize the settings of
adopted multiclass SVM methods such as DAG and tree-
based models. To determine the classification order for DAG
is somewhat ad hoc. We had conducted many trials and found
that the natural order (order by alphabet) achieved the optimal

2 The dataset is available at: http://www.cnts.ua.ac.be/conl12000/
chunking/.

3 Is available at: http://ilk kub.nl/~sabine/chunklink/.

4 See http://lcg-www.uia.ac.be/conll2000/chunking/conlleval.txt.

10.1016/j.patcog.2008.02.010

Please cite this article as: Y.-C. Wu, et al., Robust and efficient multiclass SVM models for phrase pattern recognition, Pattern Recognition (2008), doi:

http://www.cnts.ua.ac.be/conll2000/chunking/
http://www.cnts.ua.ac.be/conll2000/chunking/
http://ilk.kub.nl/~sabine/chunklink/
http://lcg-www.uia.ac.be/conll2000/chunking/conlleval.txt
http://dx.doi.org/10.1016/j.patcog.2008.02.010

Y. Wu et al. / Pattern Recognition 111 (1111) 1NI-111 9

Table 6

Experimental results of different multiclass SVM strategies on CoNLL-2000 chunking task

CoNLL-2000 Training time (h) ~ Speed-up ratio Routine processing time ~ SVM classification time (47377 words) (s) ~ Speed-up ratio (%) Fp)

OVA 2.09 240% 2.38s 2.09 436 94.25
ovo 1.27 146% 54.34 11321 94.35
DAG 4.73 986 94.31
Dense-ECOC 3.38 388% 1.53 316 90.73
Tree-based 1.04 119% 1.82 380 93.89
C-OVA 2.09 239% 1.01 211 94.25
HC-OVA 0.87 100% 0.48 100 94.10

The chunking speed of HC-OVA is about 47377/(2.38 + 0.48) = 16500 terms/s while the OVO is 835 terms/s.

Table 7

Experimental results of different multiclass SVM strategies on chinese base-chunking task

CoNLL-2000 Training time (h) Speed-up ratio (h) Routine processing time SVM classification time (47377 words) Speed-up ratio Fep

OVA ~ 1 241 3.53s 8.125s 400 92.30
OvVO ~5 172 > 5 min® > 10000 92.34
DAG > 5 min® > 10000 92.34
Dense-ECOC 9.5 327 4.07s 200 90.07
Tree-based 4.1 141 8.59s 423 92.24
C-OVA 6.9 237 5.57s 274 92.31
HC-OVA 2.9 100 2.03s 100 92.22

The chunking speed of HC-OVA is about 85409/(3.53 + 2.03) = 15600 terms/s while the OVO is about 100 terms/s.
2The OVO/DAG were performed in an inefficient data structures due to the quadratic scaled categories and support vectors that could not be processed with

efficient arrays.

performance in both chunking tasks. For the tree-based method,
we adopted the average link-based bottom-up clustering algo-
rithm to build the binary tree instead of DB2. Recall that DB2
is an NP-hard algorithm, which is impractical and cannot par-
tition the Chinese data (NP dominate more than half of the
training set). We use the mean vector (centroid) to represent
each chunk class and the clustering algorithm merged the two
closest clusters (highest cosine value) until there was only one
group.

In this paper, we employ SVM' g [41] as the classification
algorithm, which has been successfully applied to many clas-
sification problems. As reported by Refs. [12,22] working on
linear kernel is far more efficient than polynomial kernels. To
take the time efficiency into account, we choose the linear ker-
nel type.

To further enhance the chunking result, we utilize the mask
method (proposed by Refs. [11,12]) to create more training
examples. We encourage readers to see the literatures [11,12]
in detail. The setting of the mask method was the same as
the original studies. In addition we use IOE2 with backward
chunking direction for CoONLL-2000 chunking and IOB2 with
forward direction for Chinese. Words that only appear once
in the training data are not indexed as features. These settings
had been shown to be very effective in previous researches
[10-12,15,16,19].

4.3. Results for multiclass SVM models

The actual chunking performances of different multiclass
SVM methods are listed in Table 6 (CoNLL-2000) and

Table 7 (Chinese). Both CoNLL-2000 and Chinese base-
chunking tasks agree that the “one-versus-one” (OVO) achieves
the best system performance in terms of accuracy, and OVO,
C-OVA, DAG performs marginally worse. In addition, our
HC-OVA performs slightly worse than these methods. It is
not surprising that dense-ECOC achieves the worst result than
the above methods since it encodes multiclass with “dense”
Boolean codes. In basic, the ECOC was designed to correct
errors with additional codes, while the dense-ECOC does not
provide any additional bit to be corrected and thus affects the
chunking accuracy. Nevertheless the use of longer codes does
increase both training and testing time costs. Besides, how
to select a better strategy to encode the multiclass is an NP-
hard problem. One can adopt the OVO/OVA-based encoding
method for ECOC (as reported by Ref. [26]), but essentially,
it was a variant OVO/OVA prototype.

In terms of time efficiency, it is clear that HC-OVA is the most
efficient model in both training and testing on the two phrase
chunking tasks. The reports here include the routine processing
time (disk I/O and preprocessing (like feature mapping)), and
SVM classification time. The overall turn around time is the
sum of the above two factors. The observed results also support
the analysis as in Tables 4 and 5 that orders the multiclass mod-
els in terms of time efficiency. However, in both experiments
the HC-OVA were faster than the other methods. The situation
is more salient when the number of chunk class increases. In
the CoNLL-2000 chunking task the chunking speed of OVO is
835 term/s, while it decreases to < 100term/s in the Chinese
base-chunking task since the number of chunk class scale from
23 to 47.

10.1016/j.patcog.2008.02.010

Please cite this article as: Y.-C. Wu, et al., Robust and efficient multiclass SVM models for phrase pattern recognition, Pattern Recognition (2008), doi:

http://dx.doi.org/10.1016/j.patcog.2008.02.010

10 Y. Wu et al. / Pattern Recognition 111 (1111) INI—011

Table 8
Statistical significance test on the benchmark corpus

Method A Method B CoNLL-2000 Chinese base-chunking
Probability-test McNemar-test Probability-test McNemar-test

OVO DAG ~ ~ ~ ~
OvVO OVA ~ ~ ~ ~
OvVO C-OVA ~ ~ ~ ~
OVO HC-OVA ~ ~ ~ ~
(0)%/6] Tree-based ~ ~ ~
OVO Dense-ECOC > > > >
DAG HC-OVA ~ ~ ~ ~
C-OVA HC-OVA ~ > ~ ~
C-OVA Tree-based ~ > ~ ~
HC-OVA Tree-based ~ ~ ~ ~
HC-OVA Dense-ECOC > > > >

“>” means P-value <0.01; “>" means 0.01 < P-value <0.05; “~” means P-value > 0.05.

In principal, the testing time complexity of DAG should be
equal or a little bit more efficient than the OVA. The experimen-
tal results of the Chinese base-chunking task did conflict it. The
main reason is that the theoretical analysis ignores the practi-
cal system and model scalability problems. In practice, if the
class number or dimensionality tends to be huge, for example
Chinese base-chunking task, it largely increases the memory
loading. We had performed several trials with smaller dataset
and found the theoretical proof only holds when the practical
system can normally handle the SVs. However, for example, in
the Chinese chunking task, both dimension and class number
scales where the quadratic created pairwise classifiers made the
system difficult to handle such a huge and high-dimensional
SVs efficiently as OVA. We have no choice but to select an
inefficient implementation for OVO and DAG in this case.

On the other hand, we adopt the statistical tests to eval-
uate the performance difference among these methods. We
first employed the proportion-test [42], and McNemar-test [42]
to evaluate the system output tests on the standard bench-
mark corpora. Second, the one-way ANOVA evaluation metrics
is adopted to see the difference via 10-fold cross-validation.
Table 8 lists the proportion-test and McNemar-test results on
the two chunking tasks. The two statistical tests of the two tasks
mostly agree that there is no significant difference between our
methods (C-OVA and HC-OVA) and the other top-performed
multiclass SVM models, especially OVO, whereas the dense-
ECOC is quite different from C-OVA and HC-OVA at least
under 99% confidence values.

Table 9 summarizes the average recall, precision, and Fp)
rates for different multiclass SVM methods by doing 10-fold
cross-validation within the standard CoNLL-2000 training data
and the adopted Chinese base chunking training set. By means
of the 10-fold cross-validation, Table 10 lists the significant
test results using one-way ANOVA. Instead of comparing the
system output, the one-way ANOVA merely test the system
performance according to the Fg) scores of the 10 trials. In this
test, we found that the HC-OVA are significantly different from
the other methods except for the dense-ECOC and tree-based
methods, while the one-way ANOVA also showed that there is
no significant difference between C-OVA and the OVO.

Table 9
The average scores in 10-fold cross-validation on the two chunking tasks

Method CoNLL-2000 Chinese base-chunking
Recall ~ Precision Fp) Recall ~ Precision Fp)

OVA 94.39 9451 94.45 9350 94.80 94.14
Oovo 94.46 94.60 94.53 9357 94.82 94.19
DAG 94.41 9458 94.49 9358 94.82 94.20
Dense-ECOC 92.10 89.82 90.95 9259 91.49 92.03
Tree-based 94.23 9431 94.26 9349 9478 94.13
C-OVA 94.38 94.52 94.45 9350 94.80 94.15
HC-OVA 94.19 9425 94.22 9337 94.56 93.96
Table 10

One-way ANOVA tests on the two chunking tasks using the 10 fold cross-
validation results

Method A Method B CoNLL-2000 Chinese base-chunking
ovo DAG ~ ~
(0)Y/6] OVA ~ ~
ovo C-OVA ~ ~
(0)Y/¢] HC-OVA > >
(0)Y/0] Tree-based > ~
(0)6) Dense-ECOC > >
DAG HC-OVA > >
C-OVA HC-OVA > >
C-OVA Tree-based > ~
Tree-based HC-OVA ~ >
HC-OVA Dense-ECOC > >

”»

“>” means P-value <0.01; “>
P-value > 0.05.

means 0.01 < P-value <0.05; “~ means

Fig. 6 illustrates the learning curves of the above top-
performed multiclass SVM models (other than dense-ECOC)
on the two chunking tasks. The learning curves implied the
relationship between the amount of annotated corpus and the
system performance. The right-hand side of Fig. 6, we can
see that HC-OVA is not very effective on the Chinese base-
chunking task when there is only a very small amount of train-
ing data, while C-OVA performs very satisfactory accuracy as
well as OVO.

10.1016/j.patcog.2008.02.010

Please cite this article as: Y.-C. Wu, et al., Robust and efficient multiclass SVM models for phrase pattern recognition, Pattern Recognition (2008), doi:

http://dx.doi.org/10.1016/j.patcog.2008.02.010

Y. Wu et al. / Pattern Recognition 111 (1111) 1NI-111 11

93

92 r

91

90

F (beta)

89 r

88 r

--+-0VO
87 r —a— HC-OVA —¢— Tree-based

—a— DAG

—x— OVA --o- C-OVA

0.02 0.05 0.08 0.11 0.14 0.17 02 022 024 0.27

Training Examples (million words)

Fig. 6. Learning curve of different multiclass SVM models in CoNLL-2000 (left) and Chinese base-chunking (right) tasks.

94.5
94 +
935
93 +
El
-ié, 925 +
&9
92 +
915
---e-- OVO —a—DAG
91 % —a—HC-OVA —»— Tree-based|
—x—OVA -+ -C-OVA
90.5 : : : : : : : : :
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.22
Training Examples (million words)
Table 11

Comparisons of chunking performance for CoNLL-2000 task

Chunking system Recall Precision Fep

Semi-supervised structure learning® [19] 94.20 94.57 94.39
C-OVA 94.18 94.31 94.25
SVM [12] 94.12 94.13 94.12
HC-OVA 94.05 94.15 94.10
Voted-SVMs [10] 93.89 93.92 93.91
Voted-perceptrons [15] 93.38 94.20 93.79
Structural learning [19] 93.37 93.83 93.60
Generalized winnow [16] 93.60 93.54 93.57
Voted-memory-based methods [18] 91.00 94.04 92.50
Specialized HMM [17] 92.41 91.96 92.19

2The semi-supervised learning, which boosted thousands of the learners
with large unlabeled data.

As shown in above experiments, we conclude that OVO
achieves the best chunking performance but slow in testing.
In contrast, the HC-OVA is the most efficient multiclass SVM
model, which substantially is faster than conventional OVO
without a discernible change in accuracy.

4.4. Comparisons

We have shown the best chunking performance is obtained
by OVO, while HC-OVA achieved the best training and testing
time efficiency. C-OVA had no significant difference to OVO
model. Now, we select the two multiclass SVM models (C-
OVA and HC-OVA) to be compared with the published studies.
It is worth to note that the use of external knowledge, like
parsers or additional corpora is disallowed since it is not a fair
comparison. Furthermore, it is quite difficult to perform the
statistical tests, most system outputs were not easily available.
Nevertheless all of them were evaluated in the same benchmark,
it still explicitly reflects the actual chunking performance.
Table 11 lists the comparison results of the CoNLL-2000
chunking task, and Table 12 summarizes the overall chunking
accuracies of HC-OVA and C-OVA on each phrase type.

In the CoNLL-2000 chunking task, the C-OVA method at-
tends the best system performance, while HC-OVA achieves

Table 12
Chunking results for the CoNLL-2000 phrase chunking task

Phrase type C-OVA Phrase type HC-OVA

Recall Precision Fp Recall Precision Fp)

ADJP 75.80 83.00 79.24 ADJP 75.11 81.23 78.05
ADVP 81.76 84.59 83.15 ADVP 81.18 82.22 81.70
CONJP 55.56 50.00 52.63 CONJP 66.67 50.00 57.14
INTIP 100.00 100.00 100.00 INTJP 100.00 40.00 57.14
LST 0.00 0.00 0.00 LST 0.00 0.00 0.00
NP 94.52 94.82 94.67 NP 94.36 94.74 94.55
PP 98.30 96.71 97.50 PP 98.25 96.98 97.61
PRT 78.30 76.15 77.21 PRT 75.47 71.43 73.39
SBAR 87.10 88.59 87.84 SBAR 86.73 89.06 87.88
ucCp 94.44 9432 94.38 UCP 0.00 0.00 0.00
VP 75.80 94.31 94.25 VP 94.44 94.26 94.35
All 94.18 83.00 79.24 All 94.05 94.15 94.10

a very competitive Fg score (Rank 3). We ignore the
comparison of Wu’s work [12] here, since we had included his
OVA model. For the next best systems: voted-SVMs [10], and
voted-perceptrons [15] they employed the polynomial kernels
instead of the linear kernel. As discussed in Section 2.1, the
use of polynomial kernel enormously increases both training
and testing costs. In contrast, our methods are not only more
efficient but also more accurate than the two. For example,
regardless of training time cost, even the OVO only can handle
835 terms per second, it still substantially faster than polyno-
mial kernels that just chunk 20-30 words per second [10]. On
the contrary, the structural learning [19] and Winnow-based
methods [16] were presented the linear model-based methods
and achieved slightly worse accuracy than the polynomial
kernel-based approaches.

Recently, the semi-supervised structural learning (multitask
learning) [19] showed the state-of-the-art performance (94.39)
via boosting classifiers with large unlabeled dataset. However,
the multitask prototype aims to integrate tens of thousand clas-
sifiers (top-1000 learners were selected by Ref. [19]). Although
the use of redundant multitask learners slightly outperform our

10.1016/j.patcog.2008.02.010

Please cite this article as: Y.-C. Wu, et al., Robust and efficient multiclass SVM models for phrase pattern recognition, Pattern Recognition (2008), doi:

http://dx.doi.org/10.1016/j.patcog.2008.02.010

12 Y. Wu et al. / Pattern Recognition 111 (1111) 10001

95

93 r

92

F (beta)

90

89

38 i i i i i i i i i
0.02 0.04 006 008 0.1 0.12 0.14 0.16 0.18 0.22

Training examples (million words)

Fig. 7. A comparative learning curve of specialized HMM, C-OVA, and
HC-OVA for CoNLL-2000 chunking task.

C-OVA (94.25 versus 94.35), in terms of efficiency, it is far
slower than C-OVA. Each individual learner (single task) in
the multitask learning framework adopted the similar OVA pro-
totype. By assuming the same testing time of the single task
learner as OVA, the use of 1000 classifiers is 1000 times slower
than one OVA. In other words, in the CoNLL-2000 chunking
task, the full chunking time of the multitask learning is at least
4000 s (performs full OVA with 1000 times). On the contrary,
our HC-OVA and C-OVA required less than 2.86 and 3.4 s and
achieved very comparable performance.

Now we turn to compare the system training and testing
time costs. It is difficult to explicitly compare the actual time
costs with previous studies. Most studies do not report their
actual training and testing times in their works. The special-
ized HMM [17] was known as its efficient training and testing.
It only spends few seconds for training while handling more
than 40000 terms per second. Another efficient method is the
voted-memory-based system [18] that adopted the information
gain tree (IG tree). The height of IG-tree is equal to the number
of attributes (features). Its testing process is to visit the tree.
Although the actual training and testing times were not found
in Tjong Kim Sang’s study, it is clear that the time costs of the
IG-tree is much more efficient than SVM. However, these ef-
ficient methods do not show high performance (see Table 11).
We replicate the specialized HMM models [17] and report the
actual learning curve of the specialized HMM to compare with
C-OVA and HC-OVA. Fig. 7 peaks the chunking performance
of different training size for CoONLL-2000 chunking task. Com-
pared to Fig. 6, it is clear that the need of training examples of
HC-OVA is much less than the specialized HMM.

On the other hand, even the voted-SVM and voted-
perceptrons seem to be high performance, they were not ef-
ficient. As described above, to train “one” polynomial kernel
SVM with OVO type requires one day [10] and subsequently
obtain a slow chunker (20-30 terms/s). In Kudoh’s work, they
further combined eight trained chunkers to improve the per-
formance. On the contrary, the linear models, like structural
learning [19], and Winnow-based [16] seem to be much faster.

The two methods can be viewed as a variant OVA multiclass
SVM chunking model as ours.> But they are not as accurate
as the polynomial kernel methods.

Table 13 summarizes the experimental results of the Chinese
base-chunking task. In this task, the settings of our chunker
are the same as previous chunking tasks. It is worth to note
that the affix feature in Chinese base-chunking task is not ex-
plicit. Thus, we use the atomic Chinese character to represent
the affix features. Although, several Chinese phrase chunking
systems have been proposed in recent years, such as HMM-
based [43]. It is difficult to compare with these systems because
they were performed in different dataset. Thus, we only report
the actual results of the proposed chunking model for Chinese
base-chunking task.

Consequently we found that the OVO achieves the state-
of-the-art chunking performance at one hand. But the main
limitation is the slow testing time, in particular when the number
of phrase type scales to high. On the other hand, the HMM-
based method is quite efficient, but it is not the state-of-the-art.
In addition, our HC-OVA held a better trade-off between time
cost and accuracy. Its chunking speed largely outperforms the
other multiclass SVM models which can handle 16 000 terms
per second while keeping the chunking performance as high
(rank 3: F(p) = 94.10). In addition, the statistical significant
tests also agree that there is no significant difference between
HC-OVA, and OVO on the benchmark corpus.

5. Time cost analysis and discussions
5.1. Estimating training and testing time costs

Recall that we could not provide the direct proof of the test-
ing time cost of HC-OVA and unbalanced tree-based methods.
The two approaches deeply depend on the actual data distribu-
tion and SVM performance. In this section we will present the
detailed analysis of the actual training and testing time costs
on the CoNLL-2000 chunking task. The analysis is also repli-
cable to Chinese and other similar tasks. At the beginning, we
summarize the data percentages of each chunk class which was
encoded with IOE2 style in Table 14. Again we assume the
training time complexity of an SVM is O(N) where N is the
number of training examples. Using the similar way to com-
pute HC-OVA’s complexity, the actual training time cost can
be derived as follows:

(All) 4 (All — {I — NP}) + (All — {I — NP, E — NP}) + (All
—{I—NP,E—NP,0}) +--- - +({E — UCP,1 — PRT})
=N+ (1 —0.299)N + (1 — 0.299 — 0.26)N
+ (1 —0.299 — 0.26 — 0.13)N + - - - + 0.0018N
~2.89N

In CoNLL-2000 chunking training data there are about 0.2
million words. Thus, we can replace N by the actual number

5 The two methods also employed the dynamic programming technique
to re-rank the chunking result. On the contrary, we perform the deterministic
strategy.

10.1016/j.patcog.2008.02.010

Please cite this article as: Y.-C. Wu, et al., Robust and efficient multiclass SVM models for phrase pattern recognition, Pattern Recognition (2008), doi:

http://dx.doi.org/10.1016/j.patcog.2008.02.010

Y. Wu et al. / Pattern Recognition 111 (1111) 1NI-111 13

Table 13
Chunking results for the Chinese base-chunking task

Phrase type Fp) (C-OVA) Fy (HC-OVA) Phrase type Fp) (C-OVA) Fpy (HC-OVA)
ADJP 98.56 98.40 PP 0.00 0.00
ADVP 99.46 99.45 PRN 0.00 0.00
CLP 99.77 99.77 QP 97.96 97.48
Cp 0.00 0.00 VCD 55.79 55.45
DNP 0.00 0.00 VCP 93.33 87.50
DP 99.40 99.40 VNV 33.33 46.15
DVP 0.00 0.00 VP 92.93 93.04
FRAG 97.68 96.72 VPT 68.97 55.17
LCP 0.00 0.00 VRD 87.80 89.08
LST 90.20 88.46 VSB 21.78 25.21
NP 89.15 89.11 All 92.31 92.22
Table 14
Percentages of words per chunk class in the training and testing data
CoNLL-2000 E-ADJP E-ADVP E-CONJP E-INTJ E-LST E-NP E-PP E-PRT E-SBAR E-UCP E-VP
Training 0.97 1.99 0.02 0.01 0.004 26.01 10.05 0.26 1.04 0.0009 10.13
Testing 0.92 1.82 0.01 0.004 0.01 26.21 10.15 0.22 1.12 ~0 9.83

I-ADJP I-ADVP I-CONJP I-INTJ I-LST I-NP I-PP I-PRT I-SBAR 1-UCp I-VP (0)
Training 0.30 0.20 0.03 0.004 0.00 29.90 0.13 0.0009 0.03 0.002 5.66 13.17
Testing 0.35 0.18 0.027 ~0 0.004 30.34 0.10 ~0 0.008 ~0 5.58 13.04
Table 15
Training time costs for different multiclass SVM models
CoNLL-2000 OVA OVO DAG Dense-ECOC Tree-based C-OVA HC-OVA
Training cost 22N 21N 21N SN 11.28N 12.86 N 2.89N
Table 16
Testing time costs for different multiclass SVM models
CoNLL-2000 OVA OVO DAG Dense-ECOC Tree-based C-OVA HC-OVA
Expected testing cost (using empirical distribution of training data) 22 231 21 54 (221og22)* 11.26 13 2.89
Expected testing cost (using empirical distribution of testing data) 22 231 21 5+ (221og 22)* 10.97 13 2.85
Actual testing cost 22 231 21 5+ (221og 22)* 11.29 10.82 2.34
SVM classification time (47 377 words) (s) 2.09 54.34 4.73 1.53 1.82 1.01 0.48

2The dense-ECOC approach requires five times for SVM classification and 22 log22 times for bit decoding.

of training examples. Note that the tree-based method relies on
the tree construction. The actual constructed binary tree can
be shown in Appendix B. By means of similar derivations, we
observed that the training time of the tree-based method is about
11.28N. We also analyze the other multiclass SVM models.
The detail training time costs can be found in Table 15.

To evaluate the testing cost, we calculate the number of times
performing SVM classification. Here we adopt the expected tree
height to reflect the testing cost based on empirically accounting
the training and testing data. The expected tree height is defined
as follows:

C
ExpectedTreeHeight = Z P(Chi) x Height(Chi) (6)

i=1

where P (Ch;) denotes as the probability of chunk class Ch; in
the dataset and height(Ch;) is the tree level of the Ch;. In HC-
OVA, the tree is a skewed binary tree which is made by ordering
the probability of each chunk class. Thus, we can derive the
actual testing time cost of HC-OVA as follows:

P(I — NP) Height(I — NP) + P(E — NP) x Height(E — NP)
+ ---+ P(I — UCP) % Height(I — UCP)
=0.299 % 1 +0.260 %2 + - - - - +0.0009 % 21 ~2.89

Alternatively, for the tree-based method we can use the similar
way to estimate its testing cost, i.e., 11.26. We therefore gener-
alize the above computation to the other multiclass SVM mod-
els. Table 16 lists the testing time cost of different multiclass

10.1016/j.patcog.2008.02.010

Please cite this article as: Y.-C. Wu, et al., Robust and efficient multiclass SVM models for phrase pattern recognition, Pattern Recognition (2008), doi:

http://dx.doi.org/10.1016/j.patcog.2008.02.010

14 Y. Wu et al. / Pattern Recognition 111 (1111) INI—011

SVM models. The “actual testing cost” means the number of
time performing SVM classification during testing phase.

There is a problem to estimate P(Ch;), which can be ob-
served via the empirical probability in either training or test-
ing data. However, in real case the actual probability is not
available. Usually we assume that the probability distribution
of training and testing should be consistent. If they were dis-
similar with each other, the annotated data is not representative
and cannot reflect the actual empirical distribution. Besides, it
also decreases the chunking performance. For example, if the
“NP(noun phrase)” class received no training data, the mis-
classification intuitively occurs when NPs appear in the testing
data.

We can use the weighted Jensen—Shannon-divergence (JS-
divergence) [44] to evaluate the difference between the train-
ing (P) and testing (Q) data distributions. The weighted JS-
divergence is defined as follows:

Weighted_JS(P| Q) = T QKL(PIIQ)
0
+ 5 gkLeIp)
p(x)
KL(P|| Q) = > log (—= 8
(PlQ) p(x) og(q(x)> (®)

xechunk_class

where p(x) and g(x) are the probability of chunk class x in
training and testing data, respectively. Using Table 14, the dis-
tributional difference between the training and testing data can
be computed with (7). By means of the JS-divergence estima-
tion, we find that the probability distance of the two distribu-
tions is quite similar (the value is less than 0.0005). In other
words, the empirical analysis of the testing cost using the train-
ing data is very close to the testing data.

5.2. Discussion

As shown in Tables 15 and 16, the HC-OVA achieved the
best time costs in terms of training and testing. The above two
estimations are performed based on the original time complex-
ity analysis and actual data distribution. If we do know the data
are whether balanced or not, the above training cost computa-
tion can first be analyzed before training the SVM. By analyz-
ing, we can find that the main limitation of HC-OVA is that it
assumes the data are unbalanced distributed. If the data does
not obey this assumption, the time cost will be higher than the
dense-ECOC and tree-based methods. However, it is often the
case that the data are unbalanced distributed. For example, in
the CoNLL-2003 named entity recognition task [45] the most
frequent word is the non-entity term that dominates more than
half of the training set, and the multilingual dependency parsing
(about 13-languages treebanks) [46], data are also unbalanced
distributed. Therefore by theoretical and experimental demon-
stration, we conclude that the HC-OVA is not only efficient but
also kept the SVM robust.

Although the tree-based is another efficient method, it was
shown that the performance is not as effective as the OVO and

OVA. Even we use the state-of-the-art clustering technique to
establish the binary tree. The key is still the tree construction. A
good binary tree might lead to better result. But it is difficult to
obtain the optimum tree for multiclass SVM. Similar to ECOC
approaches, finding the optimum tree (or optimum encoding
strategy) is an NP-hard problem. Nevertheless the bottom-up
clustering is not a good choice to build the tree. In our case, the
algorithm should be performed until the complete clustering
tree is built. But the time complexity of bottom-up clustering is
O((DC)?) where D is the average active number of dimensions.
In our case, the average active datum per vector is about 50.12
and 39.21 for CoNLL-2000 and Chinese chunking tasks where
the highest dimension is more than 0.85 million. Especially
when the number of chunk class scales to hundred of thousands
such as text IE, and dependency parsing, the cubic clustering
time is much more intractable than SVM training.

In addition, in terms of testing time, both OVO and DAG
suffer from the memory loading problems when the number of
SVs exponentially scales. The situation is even worse to the
other nonlinear kernel types for SVM. We can use a weight vec-
tor to represent the linear combined SVs, while the nonlinear
kernels could not. For the OVO and DAG models, the critical
key-point is that they construct pairwise classifiers, which cause
the quadratic scaled SVs. Imagine the case: there are 30 train-
ing examples normally distributed in 10 categories. OVO/DAG
method should build 45 OVO classifiers where each of which
supposedly generates four SVs. Totally, they produce 180 SVs
whereas there are only 30 training instances in this example.
In our implementations, we cannot efficiently and exhaustively
handle such a high dimension and large category set for Chi-
nese chunking task where there are 47 x 46/2 = 1081 pairwise
classifiers with 0.85 million dimensions. Thus, we employ the
inefficient data structures, i.e., tree-based linked list to perform
OVO and DAG classification. Due to the scalability problem,
the DAG performed surprisingly slower than OVA method in
this task. This finding does disobey the theoretical time com-
plexity analysis where the DAG should be slightly faster than
OVA. The main reason is that the scaled categories and SVs
which make it difficult to handle the classification task with effi-
cient data structures as OVA. To efficiently classify with such a
large-scale category and high-dimensional problems with OVO
and DAG, a better implementation technique should be newly
designed. We left the improvement as the future work since in
basic it is necessary to compare with the quadratic scaled clas-
sifiers.

6. Conclusions

SVM-based phrase chunking had shown to be robust for
phrase pattern recognition problems. But its inefficiency limits
actual use to handle large amount of documents efficiently. This
paper presents two methods (C-OVA and HC-OVA) that make
the SVM substantially faster. The two methods firstly construct
the consistent matrix to reduce the unnecessary SVM classifica-
tion and HC-OVA further speed-up training and testing through
a constraint binary tree. By the theoretical computational time
complexity analyzing, HC-OVA, dense-ECOC, and tree-based

10.1016/j.patcog.2008.02.010

Please cite this article as: Y.-C. Wu, et al., Robust and efficient multiclass SVM models for phrase pattern recognition, Pattern Recognition (2008), doi:

http://dx.doi.org/10.1016/j.patcog.2008.02.010

Y. Wu et al. / Pattern Recognition 111 (1111) 1NI-111 15

methods can be efficiently trained and tested when the data
are unbalanced distributed. The experimental results also show
that our HC-OVA is the most efficient multiclass SVM model
in terms of training and testing for chunking tasks. In partic-
ular, the testing speed of HC-OVA is at least 100 times faster
than the state-of-the-art OVO model (OVO-based SVM) while
resulting a marginal decrease in accuracy. In addition, we also
found that the OVO and DAG are inefficient in testing due to
the quadratic scaled pairwise classifiers, which make the prac-
tical system inefficient to handle large-scale classification. The
situation is even worse when using other nonlinear kernels such
as polynomial kernel. Although the dense-ECOC model was
shown to be the second fast method, it was quite far away from
the other multiclass SVM models in terms of accuracy. On the
other hand, even the tree-based was another efficient models,
the cubic clustering time is needed.

The proposed methods can be also applied to other simi-
lar tasks such as bottom-up chunking to parsing, and named
entity recognition where a named entity can be treated as a
phrase chunk. It is quite often that novel question answering
systems requires a fast and accurate named entity recognizer to
handle thousands of retrieved documents in a very short time.
The proposed methods can be found at (http://140.115.112.
118/bcbb/Chunking.htm) for online demonstration purpose.

Appendix A. Supplementary data

Supplementary data associated with this article can be found
in the online version at 10.1016/j.patcog.2008.02.010.

References

[1] S. Abney, Parsing by chunks, Principle-Based Parsing (1991) 257-278.

[2] M. Surdeanu, S. Harabagiu, J. Williams, P. Aarseth, Using predicate-
argument structures for information extraction, in: Proceedings of 41st
Annual Meetings of the Association for Computational Linguistics, 2003,
pp. 8-15.

[3] S.B. Park, B.T. Zhang, Co-trained support vector machines for large scale
unstructured document classification using unlabeled data and syntactic
information, Inf. Process. Manage. 40 (2004) 421-439.

[4] R. Florian, A. Ittycheriah, H. Jing, T. Zhang, Named entity recognition
through classifier combination, in: Proceedings of Conference on Natural
Language Learning, 2003, pp. 168-171.

[5] P. Koehn, K. Knight, Feature-rich statistical translation of noun phrases,
in: Proceedings of 4lIst Annual Meetings of the Association for
Computational Linguistics, 2003, pp. 311-318.

[6] S. Pradhan, K. Hacioglu, V. Krugler, W. Ward, J.H. Martin, D. Jurafsky,
Support vector learning for semantic argument classification, Mach.
Learn. 60 (2004) 11-39.

[7] D. Gildea, M. Palmer, The necessity of parsing for predicate argument
recognition, in: Proceedings of 40th Annual Meetings of the Association
for Computational Linguistics, 2002, pp. 239-246.

[8] A. Ratnaparkhi, A Linear observed time statistical parser based on
maximum entropy models, in: Proceedings of the Second Conference
on Empirical Methods in Natural Language Processing, 1997, pp. 1-10.

[9] E.F. Tjong Kim Sang, Transforming a chunker to a parser, Computational
Linguistics in the Netherlands (2000) 177-188.

[10] T. Kudoh, Y. Matsumoto, Chunking with support vector machines, in:
Proceedings of 2nd Meetings of the North American Chapter and the
Association for the Computational Linguistics, 2001, pp. 192-199.

[11] Y.S. Lee, Y.C. Wu, A robust multilingual portable phrase chunking
system, Expert Syst. Appl. 33 (3) (2007) 1-26.

[12] Y.C. Wu, C.H. Chang, Y.S. Lee, A general and multi-lingual phrase
chunking model based on masking method, in: Computational Linguistics
and Intelligent Text Processing, Lecture Notes in Computer Science
(LNCS), vol. 3878, 2006, pp. 144-155.

[13] Y.C. Wu, T.K. Fan, Y.S. Lee, S.J. Yen, Extracting named entities using
support vector machines, in: Knowledge Discovery in Life Science
Literature, Lecture Notes in Bioinformatics (LNBI), vol. 3886, 2006,
pp. 91-103.

[14] Y.C. Wu, J.C. Yang, Y.S. Lee, S.J. Yen, Efficient and robust phrase
chunking using support vector machines, in: Information Retrieval
Technology, Lecture Notes in Computer Science (LNCS), vol. 4182,
2006, pp. 350-361.

[15] X. Carreras, L. Marquez, J. Castro, Filtering-ranking perceptron learning
for partial parsing, Mach. Learn. 59 (2005) 1-31.

[16] T. Zhang, F. Damerau, D. Johnson, Text chunking based on a
generalization winnow, J. Mach. Learn. Res. 2 (2002) 615-637.

[17] A. Molina, F. Pla, Shallow parsing using specialized HMMs, J. Mach.
Learn. Res. 2 (2002) 595-613.

[18] E.F. Tjong Kim Sang, Memory-based shallow parsing, J. Mach. Learn.
Res. 2 (2002) 559-594.

[19] RK. Ando, T. Zhang, A high-performance semi-supervised learning
method for text chunking, in: Proceedings of 43rd Annual Meetings of
the Association for Computational Linguistics, 2005, pp. 1-9.

[20] C.L. Goh, M. Asahara, Y. Matsumoto, Chinese word segmentation by
classification of characters, Int. J. Comput. Linguist. Chin. Lang. Process.
10 (3) (2005) 381-396.

[21] C. Cortes, V. Vapnik, Support-vector networks, Mach. Learn. 20 (3)
(1995) 273-2917.

[22] J. Giménez, L. Marquez, Fast and accurate part-of-speech tagging: the
SVM approach revisited, in: Proceedings of the International Conference
on Recent Advances in Natural Language Processing, 2003, pp. 158-165.

[23] R. Rifkin, A. Klautau, In defense of One-vs-all classification, J. Mach.
Learning Res. 5 (2004) 101-141.

[24] U. KreBel, Pairwise classification and support vector machines, Advances
in kernel methods: support vector learning (1999) 255-268.

[25] J.C. Platt, N. Cristianini, J. Shawe-Taylor, Large margin dags for
multiclass classification, Adv. Neural Inf. Process. Syst. 12 (2000)
547-553.

[26] A. Klautau, N. Jevtic, A. Orlitsky, On nearest-neighbor error-correcting
output codes with application to all-pairs multiclass support vector
machines, J. Mach. Learn. Res. 4 (2003) 1-15.

[27] T.K. Huang, R.C. Weng, C.J. Lin, Generalized bradley-terry models and
multi-class probability estimates, J. Mach. Learn. Res. 7 (2006) 85-115.

[28] F. Takahashi, S. Abe, Decision-tree-based multicalss support vector
machines, in: Proceedings of the 9th International Conference on Neural
Information Processing, vol. 2, 2002, pp. 1418-1422.

[29] W. Sun, J. Chen, A multi-class classifier based on SVM decision tree,
In Forum of IEEE Comput. Intell. Soc. Electronic Letter, 2006.

[30] V. Vural, J.D. Dy, A hierarchical method for multi-class support vector
machines, in: Proceedings of the 21st International Conference on
Machine Learning, 2004, pp. 831-838.

[31] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to
Algorithms, second ed., McGraw-Hill Higher Education, 2002.

[32] K. Crammer, Y. Singer, On the algorithmic implementation of multiclass
kernel-based vector machines, J. Mach. Learn. Res. 2 (2001) 265-292.

[33] T. Tsochantaridis, T. Joachims, T. Hofmann, Y. Altun, Large margin
methods for structured and interdependent output variables, J. Mach.
Learn. Res. 6 (2005) 1453-1484.

[34] L.A. Ramshaw, M.P. Marcus, Text chunking using transformation-based
learning, in: Proceedings of the 3rd Workshop on Very Large Corpora,
1995. pp. 82-94.

[35] EF. Tjong Kim Sang, J. Veenstra, Representing text chunks, in:
Proceedings of 9th Conference of the European Chapter of the
Association for Computational Linguistics, 1999, pp. 173-179.

[36] S.S. Keerthi, O. Chapelle, D. DeCoste, Building support vector machines
with reduced classifier complexity, J. Mach. Learn. Res. 7 (2006)
1493-1515.

10.1016/j.patcog.2008.02.010

Please cite this article as: Y.-C. Wu, et al., Robust and efficient multiclass SVM models for phrase pattern recognition, Pattern Recognition (2008), doi:

http://140.115.112.118/bcbb/Chunking.htm
http://140.115.112.118/bcbb/Chunking.htm
http://10.1016/j.patcog.2008.02.010
http://dx.doi.org/10.1016/j.patcog.2008.02.010

16 Y. Wu et al. / Pattern Recognition 111 (1111) INI—011

[37] T. Joachims, Training linear SVMs in linear time, in: Proceedings of
the ACM Conference on Knowledge Discovery and Data Mining, 2006,
pp. 217-226.

[38] L.W. Tsang, J.T. Kwok, PM. Cheung, Core vector machines: fast
SVM training on very large data sets, J. Mach. Learn. Res. 6 (2005)
363-392.

[39] E.F. Tjong Kim Sang, S. Buchholz, Introduction to the CoNLL-2000
shared task: chunking, in: Proceedings of 4th Conference on Natural
Language Learning, 2000, pp. 127-132.

[40] E. Brill, Transformation-based error-driven learning and natural language
processing: a case study in part of speech tagging, Comput. Linguist.
21 (4) (1995) 543-565.

[41] T. Joachims, Text categorization with support vector machines: learning
with many relevant features, in: Proceedings of 10th European
Conference on Machine Learning, 1998, pp. 137-142.

[42] T.G. Dietterich, Approximate statistical tests for comparing supervised
classification learning algorithms, Neural Comput. 10 (1998) 1895-1923.

[43] H. Li, J.J. Webster, C. Kit, T. Yao, Transductive HMM based Chinese
text chunking, in: Proceedings of Natural Language Processing and
Knowledge Engineering, 2003, pp. 257-262.

[44] 1.S. Dhillon, S. Mallela, R. Kumar, A divisive information-theoretic
feature clustering algorithm for text classification, J. Mach. Learn. Res.
3 (2003) 1265-1287.

[45] EF. Tjong Kim Sang, FD. Meulder, Introduction to the CoNLL-
2003 shared task: language-independent named entity recognition, in:
Proceedings of 7th Conference on Natural Language Learning, 2003,
pp. 142-147.

[46] S. Buchholz, E. Marsi, A. Dubey, Y. Krymolowski, CONLL-X shared task
on multilingual dependency parsing, in: Proceedings of 10th Conference
on Natural Language Learning, 2006, pp. 149-164.

About the Author—YU-CHIEH WU received the M.S. degree in the Department of Information Management in 2003 from Ming Chuan University, Taiwan.
He is currently a Ph.D. candidate of Department of Computer Science and Information Engineering in National Central University. He is also the student
members of ACL and IEICE. His research interests include natural language processing, machine learning and video information systems.

About the Author—YUE-SHI LEE received the Ph.D. degree in Computer Science and Information Engineering from National Taiwan University, Taipei,
Taiwan, in 1997. He is currently an associate professor in Department of Computer Science and Information Engineering, Ming Chuan University, Taoyuan,
Taiwan. His initial research interests were computational linguistics and Chinese language processing, and over time he evolved toward data warehousing, data
mining, information retrieval and extraction and Internet technology. He is a member of the IEEE Computer Society.

About the Author—JIE-CHI YANG received the Ph.D. degree in Human System Science from Tokyo Institute of Technology, Tokyo, Japan, in 2000. He
is currently an associate professor in Graduate Institute of Network Learning Technology, National Central University, Taiwan. His research interests include
natural language processing, mobile learning, web-based learning environment and digital game-based learning.

Please cite this article as: Y.-C. Wu, et al., Robust and efficient multiclass SVM models for phrase pattern recognition, Pattern Recognition (2008), doi:
10.1016/j.patcog.2008.02.010

http://dx.doi.org/10.1016/j.patcog.2008.02.010

	Robust and efficient multiclass SVM models for phrase pattern recognition
	Introduction
	SVM-based phrase chunking models
	Support vector machines
	Multiclass SVMs
	Phrase chunking tasks

	Efficient multiclass SVM models
	Hierarchical constraint-one-versus-all
	Constraint-one-versus-all
	Computational time complexity analysis

	Experiments
	Dataset and evaluation metrics
	Settings
	Results for multiclass SVM models
	Comparisons

	Time cost analysis and discussions
	Estimating training and testing time costs
	Discussion

	Conclusions
	Appendix A. Supplementary data
	References

